新闻动态
全部新闻公司新闻行业新闻

2019

02/13

中国芯片究竟什么水平?

芯片,以储量最丰富成本最廉价的二氧化硅为原料,成就了这个星球的科技之巅,颁一枚最佳逆袭奖,实至名归! 

在中国与外国这两国的较量中,芯片常常引得众人口水战,究竟是中国已经吊打外国,还是外国仍然摁着中国?今天咱就试着捅一捅这马蜂窝。

核心技术到底是个啥

技术研发有三条铁则:无论搁谁,研发就是烧钱烧时间,这是根本;无论搁谁,有需求或者认为有需求才会投入研发,这是动机;无论搁谁,研发第一步必然是探究已有的同类技术,俗称山寨。

把技术拆一拆,大概就这么几样东西:设计、材料、生产设备,而设备本身也是设计和材料,所以归根结底,技术可以笼统地说成材料加设计。 

结合这两条,先看几个例子。 

图片关键词

比如,独步武林的架桥机,把这台设备的每一个零件都拆了,每一个细节都抄下来,再烧几个亿试几年错,“山寨”一台架桥机对几个工业大国来说并不难。那为啥外国人不山寨呢?因为需求不大,烧出来只能当玩具。

再比如,美帝登月的土星五号火箭,至今无人超越,很多人因此就说中国火箭落后美帝五十年。但是别忘了,咱们是和今天的美帝一起落后曾经的美帝,这显然有点说不通。其实原因无比简单,当年登月是政治需求,属于冲动消费,完全是亏本买卖,有点像郑和下西洋。后来需求没了,土星五号也就跟着一块消失了。

假设,咱们硬要山寨一台土星五号有多大把握?若是像煮茶叶蛋那么搞,倾全国之力,不出2年,妥妥的。别抬杠,没人再去埃及造金字塔,总不能说现在的建筑水平不如古埃及吧?

图片关键词

中国有着这颗星球上最旺盛的基建需求、工业化需求、国防需求,由这些需求催生出的各种技术,只要不需烧太多时间的,甭管外国有没有,甭管山寨还是原创,甭管投入有多大,基本全拿下了。

这类由大投入大需求构成的技术门槛,也能筑成实打实的核心技术。只要你能造出别人造不了的东西,就算核心技术。于是,我们可以给中外两国第一阶段的较量下个结论:

如果把所有技术堆成一个金字塔,除了塔尖那一点之外,中国几乎可以单挑整个外国,尤其在某些大需求大投入的领域更是完虐外国,如填海造岛、高铁、火箭振动台等。

图片关键词

那塔尖还剩了啥?当然是需要烧很多时间的技术,塔尖的较量有些复杂,再举例子。

飞机发动机涡轮叶片,工业皇冠上的明珠,说的就是这玩意儿。如果叶片不够结实,油门踩狠了就得散架(可看前文《材料之殇:难产中国心》)。

图片关键词

这怎么山寨呢?一块材料拿到手,要测出其中的成分及比例,也就几顿饭的功夫。进一步,想要知道不同原子之间的排列规则,过程稍微复杂一点,但几天下来基本也摸透了。 

你以为这样就山寨完成了吗?不,这才开始,你得找到一种让不同原子按特定顺序排列的方法,这过程完全两眼一抹黑,要烧的时间相当长。这好比,番茄炒蛋的成分可以告诉你,但你做的菜就是没我做的好吃。

这种由烧时间烧出来的技术门槛,也只能靠烧时间去慢慢追赶,这类核心技术往往都是材料。可以说,任何牛逼设备,你拼命往细拆,最终发现都是材料技术。(当然,也有特例,比如氢弹)

比如,作为“工业之母”的高端机床,咱基本和国足一个水平,只能仰望日本德国瑞士。最大的限制就是材料,高速加工时,主轴和轴承摩擦产生热变形导致主轴抬升和倾斜,刀具磨损导致的误差,等等,所以加工精度极高的活,咱们还是望“洋”兴叹。

图片关键词

材料技术有时还要点运气。金属铼,这玩意儿和镍混一混,做出的涡轮叶片吊炸天。铼的全球探明储量大约2500吨,稀少程度排自然界第三,主要分布在欧美,这种战略物资,妥妥被美帝禁运。中国前几年在陕西发现一个储量176吨的铼矿,马上拼了命烧钱,苦逼生活才有了起色。

图片关键词

                     金属铼产量分布图

稀土永磁体,就是用稀土做的磁铁,能一直保持磁性,用处大大的。高品位稀土矿大多分布在中国,所以和“磁”相关的技术,很多是外国抱着中国大腿,美帝也不例外,比如磁约束核聚变、太空暗物质探测等。

图片关键词

非线性光学晶体,中国在九十年代就已经世界领先,并在十来年前对美帝实施了禁运,2016年美帝终于打破中国技术封锁,生产了第一块KBBF晶体。不要怀疑本僧拿错了剧本,不然你以为中国的激光武器、光量子通信从哪里来的?

图片关键词

如果我们继续罗列就会发现,应用宽泛的材料,中国大多还是落后外国,而一些细分领域,中国已经逐步领先。呃,这么说还是太笼统,咱来点数据。

小盆友们坐端正,重点来了!这种关键核心材料,全球总共约130种。整个人类的核心科技,某种程度上说,指的就是这130种材料,其中32%国内完全空白,52%依赖进口,在高端机床、火箭、大飞机、发动机等尖端领域比例更悬殊,零件虽然实现了国产,但生产零件的设备95%依赖进口。

这串数据是在2018年的一次官方论坛上火起来的,但仔细考证了一下,应该是工信部在2011年的调查报告,如今的情况据说已经大幅度改善。

说则小道消息,就在前阵子,山上有位老僧去北京开会,回来对本小僧一阵感叹:这兔子怕是急眼了,居然要投****亿在**、**领域,要求在*年内达到****,而且还要****。本僧弱弱问了句:能行吗?老僧若有所思,良久,缓缓吐了一句:时间紧,任务重。

无论怎么说,在塔尖的较量,中国虽然势头很猛,但仍明显处于下风。

好奇一下,这130种材料长啥样呢?巧了,工信部《重点新材料首批次应用示范指导目录(2017年版)》入选了六大类材料,也是130种!里面好几个都和芯片有关。

图片关键词

图片关键词

图片关键词

图片关键词

图片关键词

图片关键词

为了严谨点,这儿说的核心技术,不包括和生物有关的技术,如医药、农业等等。但凡和生物有关的,往往是另一回事!

举个粒子,电影《药神》里治疗慢粒白血病的格列卫,成份甲磺酸伊马替尼,生产制造并不难,不然三哥也不会这么轻易做出仿制药,难的是怎么知道甲磺酸伊马替尼有这作用。 

还有一些技术的门槛并非来自技术本身,比如:软件。这几乎是纯设计类技术,压根用不到材料,为啥操作系统还是被人吊打?假设你的操作系统比安卓好十倍,但没有人会用一台没有App的手机,为啥没App啊?对不起,没有公司会为一个没有用户的系统开发App。

这个死循环看明白了吗?除非有一天谷歌不让中国手机用安卓,那才是国产操作系统的春天。软件的门槛经常是来自于市场惯性。

绕的有点远了,芯片从一块石头练就霸王之躯,涉及的核心技术不是一般的多。为了便于小盆友理解,这话得从原理说起。

芯片原理和量子力学

很多文盲觉得量子力学只是物理学家的数学游戏,没有应用价值,呵呵,下面咱给计算机芯片寻个祖宗,请看示范: 

导体,咱能理解,绝缘体,咱也能理解,小盆友们第一次被物理整懵的,怕是半导体了,所以先替各位的物理老师把这债还上。 

原子组成固体时,会有很多电子混到一起,但量子力学认为,2个相同电子没法待在一个轨道上,于是,为了让这些电子不在一个轨道上打架,很多轨道就分裂成了好几个轨道,这么多轨道挤在一起,不小心挨得近了,就变成了宽宽的大轨道。在量子力学里,这种细轨道叫能级,挤在一起变成的宽轨道就叫能带。

有些宽轨道挤满了电子,电子就没法移动,有些宽轨道空旷的很,电子就可自由移动。电子能移动,宏观上表现为导电,反过来,电子动不了就不能导电。 

好了,我们把事情说得简单一点,不提“价带、满带、禁带、导带”的概念,准备圈重点! 

有些满轨道和空轨道挨的太近,电子可以毫不费力从满轨道跑到空轨道上,于是就能自由移动,这就是导体。不过一价金属的导电原理稍有不同,它的满轨道原本就不太满,所以电子不用跑到空轨道也能移动。 

但很多时候两条宽轨道之间是有空隙的,电子单靠自己是跨不过去的,表现为不导电。但如果空隙的宽度在5ev之内,给电子加个额外能量,也能跨到空轨道上,跨过去就能自由移动,表现为导电。这种空隙宽度不超过5ev的固体,有时导电、有时不导电,所以叫半导体。

如果空隙超过5ev,那基本就得歇菜,正常情况下电子是跨不过去的,这就是绝缘体。当然,如果是能量足够大的话,别说5ev的空隙,50ev都照样跑过去,比如高压电击穿空气。

到这,由量子力学发展出的能带理论就差不多成型了,能带理论系统地解释了导体、绝缘体和半导体的本质区别,即,取决于满轨道和空轨道之间的间隙。学术点说,取决于价带和导带之间的禁带宽度。 

这里有个问题,一旦细轨道变少了,能不能挤成宽轨道就不好说了,所以能带理论本质上是一个近似理论,不适用于少量原子组成的固体。

图片关键词

半导体离芯片原理还很遥远,别急。 

很明显,像导体这种直男没啥可折腾的,所以导线到了今天仍然是铜线,绝缘体的命运也差不多。 

半导体这种暧暧昧昧的性格最容易搞事情,所以与电子设备相关的产业基本都属于半导体产业,如芯片、雷达。 

下面有点烧脑细胞。 

基于一些简单的原因,科学家用硅作为半导体的基础材料。硅的外层有4个电子,假设某个固体由100个硅原子组成,那么它的满轨道就挤满了400个电子。这时,用10个硼原子取代其中10个硅原子,而硼这类三价元素外层只有3个电子,所以这块固体的满轨道就有了10个空位。这就相当于在挤满人的公交车上腾出了几个空位子,为电子的移动提供了条件。这叫P型半导体。 

同理,如果用10个磷原子取代10个硅原子,磷这类五价元素外层有5个电子,因此满轨道上反而又多出了10个电子。相当于挤满人的公交车外面又挂了10个人,这些人非常容易脱离公交车,这叫N型半导体。 

现在把PN这两种半导体面对面放一起会咋样?不用想也知道,N型那些额外的电子必然是跑到P型那些空位上去了,一直到电场平衡为止,这就是大名鼎鼎的“PN结”。(动图来自《科学网》张云的博文) 

图片关键词

这时候再加个正向的电压,N型半导体那些额外的电子就会源源不断跑到P型半导体的空位上,电子的移动就是电流,这时的PN结就是导电的。 

图片关键词

如果加个反向的电压呢?从P型半导体那里再抽电子到N型半导体,而N型早已挂满了额外的电子,多出来的电子不断增强电场,直至抵消外加的电压,电子就不再继续移动,此时PN结就是不导电的。

图片关键词

当然,实际上还是会有微弱的电子移动,但和正向电流相比可忽略不计。

图片关键词

如果你已经被整晕了,没关系,用大白话总结一下:PN结具有单向导电性。 

好了,我们现在已经有了单向导电的PN结,然后呢?把PN结两端接上导线,就是二极管: 

图片关键词

有了二极管,随手搭个电路:

图片关键词

三角形代表二极管,箭头方向表示电流可通过的方向,AB是输入端,F是输出端。如果A不加电压,电流就会顺着A那条线流出,F端就没了电压;如果AB同时加电压,电流就会被堵在二极管的另一头,F端也就有了电压。假设把有电压看作1,没电压看作0,那么只有从AB端同时输入1,F端才会输出1,这就是“与门电路”。

同理,把电路改成这样,那么只要AB有一个输入1,F端就会输出1,这叫“或门电路”:

图片关键词

现在有了这些基本的逻辑门电路,离芯片就不远了。你可以设计出一种电路,它的功能是,把一串1和0,变成另一串1和0。 

一不小心,我们就得到了芯片运算的本质:把一串1,0,变成另一串1,0。

简单举个例子,在左边输入1010,在右边输出0101,这就算完成了一次运算。

图片关键词

我们来玩个稍微复杂一点的局: 

图片关键词

左边有8个输入端,右边有7个输出端,每个输出端对应一个发光管,7个发光管组成一个数字显示器。从左边输入一串信号:00000101,经过中间一堆的电路,使得右边输出另一串信号:1011011。1代表有电压,有电压就可以点亮对应的发光管,于是,就得到了一个数字“5”,如上图所示。

终于,我们已经搞定了数字是如何显示的!如果你想进行1+1的加法运算,其电路的复杂程度就已经超过了99%的人的智商了,即便本僧亲自出手,设计的电路运算能力也抵不过一副算盘。

直到有一天,有人用18000只电子管,6000个开关,7000只电阻,10000只电容,50万条线组成了一个超级复杂的电路,诞生了人类第一台计算机,重达30吨,运算能力5000次/秒,还不及现在手持计算器的十分之一。不知道当时的工程师为了安装这堆电路,脑子抽筋了多少回。

图片关键词

接下来的思路就简单了,如何把这30吨东西,集成到指甲那么大的地方上呢?这就是芯片。 

摘自:摩尔芯闻